Section 5.5 Making Connections and Instantaneous Rates of Change

Instantaneous rates of change of a sinusoidal function follow a sinusoidal pattern.

Many real-world processes can be modelled with a sinusoidal function, even if they do not involve angles.

Modelling real-world processes usually require transformations of the basic sinusoidal functions.

- Example 1: The height, h, in metres, of a car above the ground as a ferris wheel turns can be modelled using the function $h = 20sin(\pi t/60) + 25$, where t is the time, in seconds.
 - a) Determine the average rate of change of h over each time interval, rounded to 3 decimal places.

i) 5s to 10s ii) 9s to 10s iii) 9.9s to 10s iv) 9.99s to 10s

- b) Estimate a value for the instantaneous rate of change of h at t = 10s.
- c) What physical quantity does this instantaneous rate of change represent?
- d) Would you expect the instantaneous rate of change of h to be the same at t = 15s? Justify you answer.

Example: '	The variations in maximum daily temperatures for Moose Fac	ctory, Ontario,	on the first of
	the month from January to December are shown.		

Month	Variation	
	in Temp	
	°C	
1	-14	
2	-14	
3	-4.9	
4	3.2	
5	11	
6	19.1	
7	22.4	
8	20.6	
9	15.9	
10	8.3	
11	-1.7	
12	-10	

a) Write a sinusoidal function, (both a sine and a cosine function), to model the data.

b) Make a scatter plot of the data. Then graph one of your models on the same set of axes and compare the graphs.