An equation that involves one or more trigonometric ratios of a variable is a trigonometric equation.
ex. $\sin \theta=0.5$
ex. $4 \cos x+1=0$
ex. $2 \tan 2 x-5 \tan x-3=0$

To solve linear trigonometric equations:

1) Isolate for $\sin \theta, \cos \theta, \tan \theta, \csc \theta, \sec \theta$, or $\cot \theta$.
2) Switch any reciprocal trig ratios to their corresponding primary trig ratio.
3) Use the inverse function on your calculator or special triangles and the CAST rule to find θ.

Examples: Solve the following equations in the interval $x \in[-2 \pi, 2 \pi]$
a) Find the exact values of x, for $\sin x=-1 / \sqrt{2}$
b) Round answers to 3 decimal places, for $\tan x-3=0$
c) Round answers to 3 decimal places, for $2 \sec x+5=0$

To solve quadratic trigonometric equations:

1) Set one side equal to zero.
2) Let $\mathbf{a}=\sin x$ or $\cos x$ or $\tan x$ or $\csc x$ or $\sec x$ or $\cot x$. Then replace the trig functions with \mathbf{a} in the equation.
3) Factor the equation if possible. Then set each factor equal to zero and solve for \mathbf{a}.
4) If it is not possible to factor, use the quadratic formula to solve for \mathbf{a}.
5) Replace each \mathbf{a} with the appropriate trig function.
6) Solve each factor using your rules for solving linear trigonometric equations.

Examples: Solve each equation in the interval $x \in[-2 \pi, 2 \pi]$
a) $\cos 2 x-1=0$
b) $2 \csc 2 x-\csc x-1=0$
c) $5 \cot 2 x-2 \cot x-3=0$

Example: The range of an arrow shot from a particular box can be modeled by the equation $r=100 \sin 2 \theta$, where r is the range in metres and θ is the angle in radians above the horizontal that the arrow is released. A target is placed 80 m away.
a) What are the restrictions on the angle θ ?
b) Determine the angle or angles that the archer should use to hit the target, to the nearest hundredth of a radian.

