The transformation of a sine or cosine function $f(x)$ to $g(x)$ has the general form:
$g(x)=a f[k(x-d)]+c$
where $\mathbf{a} \mathbf{a}$ is the amplitude, if $\mathrm{a}<0$, there is a reflection in the x -axis
\mathbf{k} is the horizontal stretch or compression, if $\mathrm{k}<0$ there is a reflection in the y -axis
d is the phase shift
\mathbf{c} is the vertical displacement.
The period is given by $2 \pi / k$

Examples: Transform the function $f(x)=\sin x$ to $g(x)$ such that $g(x)=3 \sin \left[\frac{3}{2} x+\frac{\pi}{4}\right]-2$ State the min and max values, the amplitude, the period, the phase shift the vertical displacement, and the domain and range. Graph both functions, $f(x)$ and $g(x)$, over 2 cycles.

Transforming Sinusoidal functions to Match Data not Given in Terms of $\boldsymbol{\pi}$

*Remember that a period, p , is $\mathrm{p}=2 \pi / \mathrm{k}$ and that $\mathrm{k}=2 \pi / \mathrm{p}$.
Transform the function $f(x)=\cos x$ to $g(x)$ such that $g(x)$ has an amplitude of 2 , a period of 1 , a phase shift of 0.5 to the left and a vertical displacement of 3 units up. Graph the function over 2 cycles. Write the equation of the function.

Example: Write an equation to represent the following functions.
a) A sine function with a maximum value of 5 , a minimum value of -3 , a phase shift of $5 \pi / 6$ rad to the right and a period of $2 \pi / 3$.
b) A cosine function has a maximum value of -2 and a minimum value of -3 , a phase shift of 3 rad to the left and a period of 5 .

Example: Given the graph below, write an equation using both a cosine and sine function.

Example: The vertical position, h, in metres, of a rider on a Ferris wheel, after time, t, in seconds, is a sinusoidal function. The maximum height above the ground is 22 m and the minimum height is 2 m . The Ferris wheel completes one turn in 30 seconds, and the model predicts the highest point at $\mathrm{t}=0$ seconds. Determine an equation to model the Ferris wheel's rotation as both a cosine and a sine function.

