Below is the graph of $y=\sin x$. Recalling that $\csc x=1 / \sin x$, sketch the graph of $y=\csc x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\sin x$	$\csc x$
0	0	
$\pi / 6$	0.5	
$\pi / 3$	0.866	
$\pi / 2$	1	
$2 \pi / 3$	0.866	
$5 \pi / 6$	0.5	
π	0	
$7 \pi / 6$	-0.5	
$4 \pi / 3$	-0.866	
$3 \pi / 2$	-1	
$5 \pi / 3$	-0.886	
$11 \pi / 6$	-0.5	
2π	0	

Below is the graph of $y=\cos x$. Recalling that $\sec x=1 / \cos x$, sketch the graph of $y=\sec x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\cos x$	$\sec x$
0	1	
$\pi / 6$	0.866	
$\pi / 3$	0.5	
$\pi / 2$	0	
$2 \pi / 3$	-0.5	
$5 \pi / 6$	-0.866	
π	-1	
$7 \pi / 6$	-0.886	
$4 \pi / 3$	-0.5	
$3 \pi / 2$	0	
$5 \pi / 3$	0.5	
$11 \pi / 6$	0.866	
2π	1	

Below is the graph of $y=\tan x$. Recalling that $\cot x=1 / \tan x$, sketch the graph of $y=\cot x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\tan \mathrm{x}$	$\cot \mathrm{x}$
0	0	
$\pi / 4$	1	
$\pi / 2$	undef	
$3 \pi / 4$	-1	
π	0	
$5 \pi / 4$	1	
$3 \pi / 2$	undef	
$7 \pi / 4$	-1	
2π	0	

Complete the summary table.

Property	Cosecant $y=\csc x$	Secant $y=\sec x$	Cotangent $y=\cot x$
Domain			
Range			
Period			
Equations of Asymptotes			
Points of intersection with corresponding Primary Trig Functions			

Modelling with Reciprocal Relationships

Example: When the sun is directly overhead, its rays pass through the atmosphere as shown. Call this 1 unit of atmosphere. When the Sun is not overhead, but is inclined at angle x to the surface of the Earth, its rays pass through more air before they reach sea level. Call this y units of atmosphere. The value of y affects the temperature of the Earth.

a) Determine an expression for y in terms of angle x .
b) Graph $y=f(x)$ in the interval $x \in[0, \pi / 2]$.

x	$\tan x$	$\cot x$
0	0	
$\pi / 36$	1	
$\pi / 18$	undef	
$\pi / 12$	-1	
$\pi / 6$	0	
$\pi / 4$	1	
$\pi / 3$	undef	
$5 \pi / 12$	-1	
$\pi / 2$	0	

c) Describe what happens to the value of y as x approaches 0 . Explain this answer in relation to the question.

