Graph of $y=\sin \theta$ for $-2 \pi \leq \theta \leq 2 \pi$

θ	θ	y
-360°	-2π	
-270°	$-3 \pi / 2$	
-180°	$-\pi$	
-90°	$-\pi / 2$	
0°	0	
90°	$\pi / 2$	
180°	π	
270°	$3 \pi / 2$	
360°	2π	

Graph of $y=\cos \theta$ for $-2 \pi \leq \theta \leq 2 \pi$.

θ	y

Graph of $y=\tan \theta$ for $-2 \pi \leq x \leq 2 \pi$.

θ	y

Basic Transformations of $y=\sin \theta$ and $y=\cos \theta$ still hold true for angles measured in radians.
Amplitude $\Rightarrow y=a \sin \theta$ and $y=a \cos \theta$

- "a" is the amplitude of the function.
- When "a" is negative, a reflection exists over the x -axis.
- $\mathrm{a}=($ maximum- minimum $) / 2$

Vertical Displacement $\Rightarrow y=\sin \theta+c$ and $y=\cos \theta+c$

- The function moves up or down along the y -axis by "c" units.
- $\mathrm{c}=($ maximum + minimum $) / 2$

Phase Shift $\Rightarrow y=\sin (\theta-d)$ and $y=\cos (\theta-d)$

- The function moves left or right along the θ-axis by "d" units.

Period Change $\Rightarrow y=\sin k \theta$ and $y=\cos k \theta$

- The function has a new period given by $\mathrm{p}=2 \pi / \mathrm{k}$.
- $\operatorname{Sok}=2 \pi / \mathrm{p}$

Example: Transform the graph of $y=\sin x$ to obtain $y=\sin x-2$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: Transform the graph of $y=\cos x$ to obtain $y=-3 \cos x$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: Transform the graph of $y=\sin x$ to obtain $y=\sin \left(x-\frac{\pi}{3}\right)$, over two cycles.

Amplitude:
Domain:
Period:

Range: Phase Shift:

Vert.Displacement:
Example: Transform the graph of $y=\cos x$ to obtain $y=\cos 2 x$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: A cosine function has a period of 6π, a maximum value of 5, and a minimum value of -9 . Assuming there is no phase shift, determine an equation representing this cosine function in the form $y=a \cos (k x)+c$.

Example: One cycle of a sine function begins at $x=-\pi / 4$ and ends at $x=5 \pi / 4$.
a) Determine the period of the function.
b) Determine the phase shift of the function.
c) Write the equation of the function in the form $y=\sin [k(x-d)]$

