Section 4.3 Equivalent Trigonometric Expressions

- Equivalent trigonometric expressions are expressions that yield the same value for all values of the variable.
- An identity is an equation that is true for all values of the variable for which the expressions on both sides of the equation are defined.
- An identity involving trigonometric expressions is called a trigonometric identity.

Cofunction Identities

Using a Right Triangle and the Unit Circle to determine equivalent trigonometric identities featuring $\frac{\pi}{2}$.

$$
\begin{array}{ll}
\sin x=b & \sin \left(\frac{\pi}{2}-x\right)=a \\
\cos x=a & \cos \left(\frac{\pi}{2}-x\right)=b \\
\tan x=\frac{b}{a} & \tan \left(\frac{\pi}{2}-x\right)=\frac{a}{b} \\
\csc x=\frac{1}{b} & \csc \left(\frac{\pi}{2}-x\right)=\frac{1}{a} \\
\sec x=\frac{1}{a} & \sec \left(\frac{\pi}{2}-x\right)=\frac{1}{b} \\
\cot x=\frac{a}{b} & \cot \left(\frac{\pi}{2}-x\right)=\frac{b}{a}
\end{array}
$$

So in Quadrant $1 \quad \sin \left(\frac{\pi}{2}-x\right)=\cos x$

$$
\cos \left(\frac{\pi}{2}-x\right)=\sin x
$$

$$
\tan \left(\frac{\pi}{2}-x\right)=\cot x
$$

$$
\csc \left(\frac{\pi}{2}-x\right)=\sec x
$$

$$
\sec \left(\frac{\pi}{2}-x\right)=\csc x
$$

$$
\cot \left(\frac{\pi}{2}-x\right)=\tan x
$$

$$
\begin{array}{ll}
\sin x=b & \sin \left(\frac{\pi}{2}+x\right)=a \\
\cos x=a & \cos \left(\frac{\pi}{2}+x\right)=-b \\
\tan x=\frac{b}{a} & \tan \left(\frac{\pi}{2}+x\right)=-\frac{a}{b} \\
\csc x=\frac{1}{b} & \csc \left(\frac{\pi}{2}+x\right)=\frac{1}{a} \\
\sec x=\frac{1}{a} & \sec \left(\frac{\pi}{2}+x\right)=-\frac{1}{b} \\
\cot x=\frac{a}{b} & \cot \left(\frac{\pi}{2}+x\right)=-\frac{b}{a}
\end{array}
$$

So in Quadrant $2 \sin \left(\frac{\pi}{2}+x\right)=\cos x$ $\cos \left(\frac{\pi}{2}+x\right)=-\sin x$ $\tan \left(\frac{\pi}{2}+x\right)=-\cot x$ $\csc \left(\frac{\pi}{2}+x\right)=\sec x$
$\sec \left(\frac{\pi}{2}+x\right)=-\csc x$
$\cot \left(\frac{\pi}{2}+x\right)=-\tan x$

Example: Given that $\sin \frac{\pi}{5} \cong 0.5878$, use equivalent trigonometric expressions to evaluate the following, to four decimal places.
a) $\cos \frac{3 \pi}{10}$
b) $\cos \frac{7 \pi}{10}$

Example: Given that $\csc \frac{2 \pi}{7} \cong 1.2790$, use equivalent trigonometric expressions to determine the $\sec \frac{3 \pi}{14}$, to four decimal places.

Example: Given that $\cot \frac{\pi}{6}=\sqrt{3}$, use equivalent trigonometric expressions to show that $\tan \frac{2 \pi}{3}=-\sqrt{3}$, to four decimal places.

Example: Given that $\sec \mathrm{b}=\csc 1.05$, and that b lies in the first quadrant, use a cofunction identity to determine the measure of angle b, to two decimal places.

More Cofunction Identities

In Quadrant I:

$$
\begin{aligned}
& \sin x=b \\
& \cos x=a \\
& \tan x=b / a \\
& \csc x=1 / b \\
& \sec x=1 / a \\
& \cot x=a / b
\end{aligned}
$$

In Quadrant III:

$$
\begin{aligned}
& \sin (\pi+x)=-b \\
& \cos (\pi+x)=-a \\
& \tan (\pi+x)=b / a \\
& \csc (\pi+x)==1 / b \\
& \sec (\pi+x)=-1 / a \\
& \cot (\pi+x)=a / b
\end{aligned}
$$

In Quadrant II:

$$
\begin{aligned}
& \sin (\pi-x)=b \\
& \cos (\pi-x)=-a \\
& \tan (\pi-x)=-b / a \\
& \csc (\pi-x)=1 / b \\
& \sec (\pi-x)=-1 / a \\
& \cot (\pi-x)=-a / b
\end{aligned}
$$

In Quadrant IV:

$$
\begin{aligned}
& \sin (2 \pi-x)=-b \\
& \cos (2 \pi-x)=a \\
& \tan (2 \pi-x)=-b / a \\
& \csc (2 \pi-x)=-1 / b \\
& \sec (2 \pi-x)=1 / a \\
& \cot (2 \pi-x)=-a / b
\end{aligned}
$$

