Section 4.3 Equivalent Trigonometric Expressions

- Equivalent trigonometric expressions are expressions that yield the same value for all values of the variable.
- An identity is an equation that is true for all values of the variable for which the expressions on both sides of the equation are defined.
- An identity involving trigonometric expressions is called a trigonometric identity.

Cofunction Identities

Using a Right Triangle and the Unit Circle to determine equivalent trigonometric identities featuring $\frac{\pi}{2}$.

So in Quadrant 1 $\sin\left(\frac{\pi}{2} - x\right) = \cos x$ $\cos\left(\frac{\pi}{2} - x\right) = \sin x$ $\tan\left(\frac{\pi}{2} - x\right) = \cot x$ $\csc\left(\frac{\pi}{2} - x\right) = \sec x$ $\sec\left(\frac{\pi}{2} - x\right) = \sec x$ $\sec\left(\frac{\pi}{2} - x\right) = \csc x$ $\cot\left(\frac{\pi}{2} - x\right) = \tan x$

$$\sin x = b \qquad \qquad \sin\left(\frac{\pi}{2} + x\right) = a$$
$$\cos x = a \qquad \qquad \cos\left(\frac{\pi}{2} + x\right) = -b$$
$$\tan x = \frac{b}{a} \qquad \qquad \tan\left(\frac{\pi}{2} + x\right) = -\frac{a}{b}$$
$$\csc x = \frac{1}{b} \qquad \qquad \csc\left(\frac{\pi}{2} + x\right) = \frac{1}{a}$$
$$\sec x = \frac{1}{a} \qquad \qquad \sec\left(\frac{\pi}{2} + x\right) = -\frac{1}{b}$$
$$\cot x = \frac{a}{b} \qquad \qquad \cot\left(\frac{\pi}{2} + x\right) = -\frac{b}{a}$$

So in Quadrant 2 $sin\left(\frac{\pi}{2} + x\right) = \cos x$ $cos\left(\frac{\pi}{2} + x\right) = -\sin x$ $tan\left(\frac{\pi}{2} + x\right) = -\cot x$ $csc\left(\frac{\pi}{2} + x\right) = \sec x$ $sec\left(\frac{\pi}{2} + x\right) = -\csc x$ $cot\left(\frac{\pi}{2} + x\right) = -\tan x$ Example: Given that $\sin \frac{\pi}{5} \approx 0.5878$, use equivalent trigonometric expressions to evaluate the following, to four decimal places.

a)
$$\cos \frac{3\pi}{10}$$
 b) $\cos \frac{7\pi}{10}$

Example: Given that $\csc \frac{2\pi}{7} \approx 1.2790$, use equivalent trigonometric expressions to determine the $\sec \frac{3\pi}{14}$, to four decimal places.

Example: Given that $\cot \frac{\pi}{6} = \sqrt{3}$, use equivalent trigonometric expressions to show that $\tan \frac{2\pi}{3} = -\sqrt{3}$, to four decimal places.

Example: Given that sec $b = \csc 1.05$, and that b lies in the first quadrant, use a cofunction identity to determine the measure of angle b, to two decimal places.

More Cofunction Identities

In Quadrant I:

In Quadrant II:

$\sin x = b$	$sin(\pi - x) = b$
$\cos x = a$	$cos(\pi - x) = -a$
$\tan x = b/a$	$tan(\pi - x) = -b/a$
$\csc x = 1/b$	$csc(\pi - x) = 1/b$
$\sec x = 1/a$	$sec(\pi - x) = -1/a$
$\cot x = a/b$	$cot(\pi - x) = -a/b$

In Quadrant III:

In Quadrant IV:

$\sin(2\pi - x) = -b$
$\cos(2\pi - x) = a$
$\tan(2\pi - x) = -b/a$
$csc(2\pi - x) = -1/b$
$sec(2\pi - x) = 1/a$
$\cot(2\pi - x) = -a/b$