The radian measure of an angle θ is defined as the length, a, of the arc that subtends the angle divided by the radius, r, of the circle.

$$
\theta=\frac{a}{r}
$$

For one complete revolution, the length of the arc equals the circumference of the circle, 2π r.

$$
\theta=\frac{2 \pi r}{r}=2 \pi
$$

One complete revolution measures 2π radians.

Converting Radians to Degrees

2π radians $=360^{\circ}$
1 radian $=\frac{360^{\circ}}{2 \pi}$

1 radian $=\frac{180^{\circ}}{\pi}$

Multiply the radians by $\frac{180^{\circ}}{\pi}$ to determine the equivalent degree measurement.
$\therefore 1$ radian is approx. 57.3°.

Converting Degrees to Radians

$$
\begin{aligned}
& 360^{\circ}=2 \pi \text { radians } \\
& 1^{\circ}=\frac{2 \pi}{360^{\circ}} \\
& 1^{\circ}=\frac{\pi}{180^{\circ}}
\end{aligned}
$$

Multiply the degrees by $\frac{\pi}{180^{\circ}}$ to determine the equivalent radian measurement.
$\therefore 1^{\circ}$ is approx. 0.0175 radians.

Examples:
a) Convert 60° to radians. Determine an exact measurement and an approximate measurement.
b) Using the exact value for 60°, determine the radian measure of $120^{\circ} \& 20^{\circ}$.
c) Convert $\frac{2 \pi}{3}$ radians to degrees.
d) Convert 4.32 radians to degrees.

Arc Length

To determine the arc length, we use the formula $\theta=\frac{a}{r}$ and isolate for $\mathbf{a}, a=r \theta$. To use the arc length formula θ must be measured in radians.

Example: A circle has a radius of 4.7 cm . Determine the length of the arc subtended by each angle.
a) 1.7 radians
b) 64°

Angular Velocity of a Rotating Object

The angular velocity of a rotating object is the rate at which the central angle changes with respect to time.

To determine the Angular Velocity of a Rotating Object:

1) Multiply the number of revolutions by 360 o or 2π depending on whether the answer is required in degrees or radians.
2) Divide your answer by the corresponding unit of measurement.

Example: The hard disk in a computer rotates at 7200 revolutions per minute. Determine the angular velocity in:
a) Degrees per second.
b) Radians per second.

