To solve rational equations algebraically

- Factor the expressions in the numerator and denominator to find asymptotes and restrictions.
- Multiply both sides by the factored denominators, and simplify to obtain a polynomial equation. Then, solve using techniques you learned in unit 2 .

Example: Solve algebraically. Check your solution(s) for a) and b).
a) $\frac{4}{3 x-5}=4$
b) $\frac{3 x}{3 x+2}-\frac{2 x}{3 x-2}=1$
c) $\frac{x-5}{x^{2}-3 x-4}=\frac{3 x+2}{x^{2}-1}$

For rational inequalities:

- It can often help to rewrite with the right side equal to zero. Then, use test points to determine the sign of the expression in each interval.
- If there is a restriction on the variable, you may have to consider more than one case. For example, if $\frac{a}{x-k}<b$ case 1 is $\mathrm{x}>\mathrm{k}$ and case 2 is $\mathrm{x}<\mathrm{k}$.
- Tables and number lines can help organize intervals and provide visual clue to solutions.
- The critical values of \mathbf{x} are those values where there is a vertical asymptote, or where the slope of the graph of the inequality changes sign.

Example: Solve the following inequalities. Illustrate the solutions on a number line.
a) $\frac{2}{x-5}<10$
b) $\frac{x^{2}-x-2}{x^{2}+x-12} \geq 0$

