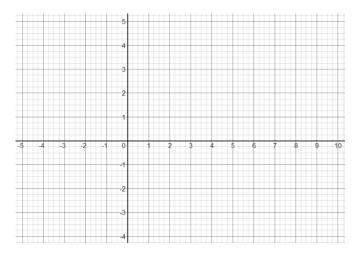
Section 3.3 Rational Functions of the Form
$$f(x) = \frac{ax+b}{cx+d}$$

In this section you will look at polynomial functions in which both the numerator and denominator are linear expressions.

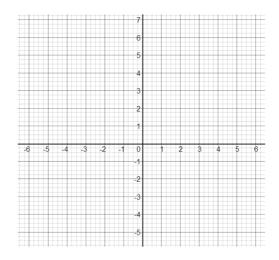

Because there is a variable in both the numerator and denominator, there are effects on both the vertical and horizontal asymptotes and as a result the domain and range.

A rational function of the form $f(x) = \frac{ax+b}{cx+d}$ has the following key features:

- The equation of the vertical asymptote can be found by setting the denominator equal to zero and solving for x, provided the numerator does not have the same zero.
- The equation of the horizontal asymptote can be found by dividing each term in both the numerator and the denominator by x and investigating the behaviour of the function as x→ ±∞.
- The **b** constant acts to stretch the curve, but has no effect on the asymptotes, domain, or range.
- The **d** constant shifts the vertical asymptote.
- The two branches of the graph of the function are equidistant from the point of intersection of the vertical and horizontal asymptotes.

Example: Consider the function $f(x) = \frac{x+4}{x-2}$

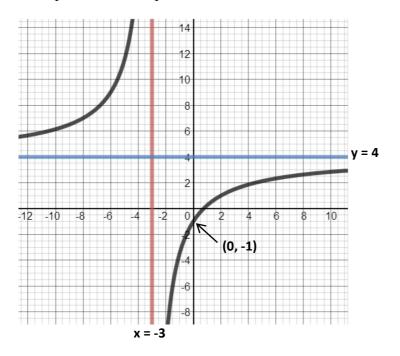
- a) Determine the equation of the vertical asymptote.
- b) Determine the equation of the horizontal asymptote.(*divide each term by x and simplify*)
- c) Determine the x-and y-intercepts.
- d) State the domain and range.
- e) Sketch a graph of the function and label all important points.


f) Complete a table to summarize the intervals of increase and decrease. (*Include the vertical asymptotes and the x-intercepts.*)

Interval		
Sign of $f(x)$		
Sign of Slope		

Examples: Compare the effects of the functions by graphing all 3 functions. Find the asymptotes and intercepts to help graph each function. State the domain and range of each function.

a)
$$f(x) = \frac{x-1}{2x+3}$$
 b) $g(x) = \frac{x-2}{2x+3}$


						7						
						6						
						5						
						4						
						3						
						2						
						1						
-6	-5	-4	-3	-2	-1	0 -1 -2 -3 -4	1	2	3	4	5	6
						-5						

Example: Write an equation for a rational function whose graph has all of the indicated features.

 $\rightarrow \text{ x-intercept of } \frac{4}{7} \qquad \qquad \rightarrow \text{ y-intercept of } -2$ $\rightarrow \text{ horizontal asymptote at } y = \frac{7}{3} \qquad \rightarrow \text{ vertical asymptote at } x = -\frac{2}{3}$

Example: Write an equation for the rational function shown on the graph below.

