The reciprocal of a linear function has the form $f(x)=\frac{a}{k x-d}+c=\frac{1}{k\left(x-\frac{d}{k}\right)}+c$
The restriction on the domain of a reciprocal linear function can be determined by finding the value of x that makes the denominator equal to zero, that is $x=\frac{d}{k}$. Therefore, the domain of a reciprocal linear function is $\{x \in R, x \neq d / k\}$

Asymptotes

The vertical asymptote of a reciprocal linear function occurs when $\mathrm{x}=\mathrm{d} / \mathrm{k}$.
$x \rightarrow x^{+}$means "as x approaches a from the right" $x \rightarrow x^{-}$means "as x approaches a from the left"

The horizontal asymptote of a reciprocal linear function of the form $f(x)=\frac{1}{k x-d}+c$ has equation $\mathrm{y}=\mathrm{c}$.

If $k>0$, the left branch of a reciprocal linear function has a negative, decreasing slope, and the right branch has a negative, increasing slope.

If $k<0$, the left branch of a reciprocal linear function has a positive, increasing slope, and the right branch has a positive, decreasing slope.

Example: Consider the function $f(x)=\frac{1}{x+2}$
a) State the domain
b) Make a sketch of the function
c) Describe the behaviour of the function near the vertical asymptote.
\therefore As $x \rightarrow 2^{-} f(x) \rightarrow \quad$ As $x \rightarrow 2^{+} f(x) \rightarrow$
d) Describe the end behaviour (as x approaches negative and positive infinity)
\therefore As $x \rightarrow-\infty f(x) \rightarrow \quad$, As $x \rightarrow+\infty f(x) \rightarrow$
e) State the Range
f) Describe the intervals where the slope is increasing and the intervals where the slope is decreasing in the two branches of the rational function.

Example: Determine the x -intercepts and y -intercepts of the function $g(x)=\frac{3}{x+4}$

Example: Determine the equation in the form $f(x)=\frac{1}{k x-d}$ for the function with a vertical asymptote at $\mathrm{x}=-2$ and a y -intercept at $-1 / 10$.

Example: For each reciprocal function
i) write an equation to represent the vertical asymptote
ii) write an equation to represent the horizontal asymptote
iii) determine the x-and y-intercepts
iv) state the domain and range
v) sketch a graph
vi) describe the intervals where the slope is increasing and where it is decreasing
a) $f(x)=\frac{3}{x-2}$

b) $g(x)=-\frac{1}{2 x+5}$

c) $h(x)=\frac{2}{1-x}$

