- A polynomial inequality results when the equal sign in a polynomial equation is replaced with an inequality symbol.

Less than
Greater than

- The real zeros of a polynomial function, or x-intercepts of the corresponding graph, divide the x-axis into intervals that can be used to solve a polynomial inequality.
- Polynomial inequalities may be solved graphically by determining the x-intercepts and then using the graph to determine the intervals that satisfy the inequality.
- A CAS (computer algebra system) on a graphing calculator may be used to solve a polynomial inequality numerically by determining the roots of the polynomial equation and then testing values in each interval to see if they make the inequality true.

Examine the graph of $f(x)=x^{2}+4 x-12$
The x -intercepts are -6 and 2 . These correspond to the zeros of the function $f(x)=x^{2}+4 x-12$

By moving from left to right along the x -axis, we can make the following observations.

- The function is positive when $x<-6$ since the y-values are positive
- The function is negative when $-6<x<2$ since the y-values are negative.
- The function is positive when $\mathrm{x}>2$ since the y-values are positive

The zeros -6 and 2 divide the x -axis into three intervals: $\mathrm{x}<-6,-6<\mathrm{x}<2$ and $\mathrm{x}>2$. In each interval, the function is either positive or negative. The information can be summarized in a table, as shown below.

Interval	$\mathrm{x}<-6$	$-6<\mathrm{x}<2$	$\mathrm{x}>2$
Sign of Function	+	\bullet	+

Examples: Write inequalities for the values of x shown.
a) -10-9-8-7-6-5-4-3-2-1012345678910
b)

Example: Write intervals into which the x -axis is divided by each set of x -intercepts of a polynomial function.
a) $-1 / 2,5$
b) $-4,0,1$

Example: Sketch a graph of a cubic polynomial function $y=f(x)$ such that

$$
\begin{aligned}
& f(x)<0 \text { when } x<-3 \text { or }-1<x<5, \text { and } \\
& f(x)>0 \text { when }-3<x<-1 \text { or } x>5
\end{aligned}
$$

Example: For the following graphs, write the
i) x-intercepts
ii) intervals of x for which the graph is positive
iii) intervals of x for which the graph is negative
a)

b)

