- A family of functions is a set of functions with the same characteristics.
- Polynomial functions with the same zeros are said to belong to the same family. The graphs of polynomial functions that belong to the same family have the same \mathbf{x}-intercepts but different \mathbf{y}-intercepts (unless zero is one of the x - intercepts).
- A family of polynomial functions with zeros $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \ldots$ an, can be represented by an equation of the form $f(x)=k\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right) \ldots\left(x-a_{n}\right)$, where $k \in$ $R, k \neq 0$.
- An equation for a particular member of a family of polynomial functions can be determined if a point on the graph is known.

Example: The zeros of a family of quadratic functions are -3 and 2 .
a) Determine an equation for this family.

$$
f(x)=k(x+3)(x-2)
$$

b) Write equations for two functions that belong to this family.

$$
f(x)=35(x+3)(x-2)
$$

$$
f(x)=-1(x+3)(x-2)
$$

c) Determine an equation for the member of the family whose graph has a y-intercept of -18 .

$$
\begin{aligned}
&-18=k(0+3)(0-2) \quad \mathrm{x}=0 \text { for } \mathrm{y} \text {-intercept } \\
&-18=-6 k \\
& 3=k \\
& \text { So } f(x)=3(x+3)(x-2)
\end{aligned}
$$

Example: The zeros of a family of cubic functions are $-3,1$, and 4 .
a) Determine an equation for this family.
b) Write equations for two functions that belong to this family.
c) Determine an equation for the member of the family whose graph has a y-intercept of -18 .
d) Sketch graphs of the functions in parts b) and c).

Example:

a) Determine a simplified equation for the family of quartic equations with zeros at ± 1 and $2 \pm \sqrt{3}$.
b) Determine an equation for the member of the family whose graph passes through the point $(2,18)$.

Example: Determine an equation for the quartic function represented by this graph.

