- The real roots of a polynomial equation $P(x)=0$ correspond to the x -intercepts of the graph of the polynomial function $P(x)$.
- The x-intercepts of the graph of a polynomial function correspond to the real roots of the related polynomial equation. They can also be called the zeros of the function.
- If a polynomial equation is factorable, the roots are determined by factoring the polynomial, setting its factors equal to zero, and solving each factor.
- If a polynomial equation is not factorable, the roots can be determined from the graph using technology.

Example: Solve the following polynomials by factoring. Then use the x -intercepts and the end behaviour of the functions to sketch a graph.
a) $-x^{3}+x^{2}+6 x=0$
b) $2 x^{3}-x^{2}-18 x+9=0$
c) $x^{3}-3 x^{2}+x=3$

Example: Solve the following using the factor theorem. Round to 2 decimal places where necessary.
a) $2 x^{3}+3 x^{2}-11 x=6$
b) $x^{3}+3 x^{2}-11 x+7=0$

Example: The volume, V , in cubic centimeters, of a block of wood that a sculptor uses to carve a wolf can be modelled by $V(x)=9 x^{3}+3 x^{2}+120 x$, where x represents the thickness of the block, in centimeters. What maximum thickness of wolf can be carved from a block of wood with a volume of $1332 \mathrm{~cm}^{3}$?

