A power function is the simplest type of polynomial function and has the form $f(\mathbf{x})=\mathbf{a x}$, where \mathbf{x} is a variable, \mathbf{a} is a real number and \mathbf{n} is a whole number.

A polynomial expression is an expression of the form:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x^{1}+a_{0} x^{0}
$$

Recall, we very seldom show exponent values of 1 , and $x^{0}=1$
so

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

Where

- n is a whole number
- x is a variable
- the coefficients $a_{0}, a_{1}, a_{2}, \ldots$ are real numbers
- the degree of the expression is n, the exponent on the greatest power of x
- a_{n}, is the coefficient of the greatest power of x , and is called the leading coefficient
- a_{0}, the term without a variable, is the constant term

A polynomial function has the form:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}
$$

Traditionally, polynomial functions are written in descending order of powers of \mathbf{x}. (It keeps things looking nice and neat)
P.S the exponents in the function do not need to decrease consecutively, some terms may have zero as the coefficient. So $f(x)=12 x^{4}+2 x^{2}+5$ is still a polynomial function, it just means that for ease we did not show the zero coefficient terms $f(x)=12 x^{4}+0 x^{3}+2 x^{2}+0 x+5$.

Some Power Functions have special names that are associated with their degree

Power Function	Degree	Name
$\mathrm{y}=a$	0	Constant
$\mathrm{y}=a x$	1	Linear
$y=a x^{2}$	2	Quadratic
$y=a x^{3}$	3	Cubic
$y=a x^{4}$	4	Quartic
$y=a x^{5}$	5	Quintic

Example: Determine which functions are polynomials. Justify your answer.
State the degree and the leading coefficient of each polynomial function.
a) $g(x)=\cos x$
b) $f(x)=3 x^{4}$
c) $f(x)=x^{5}-3 x^{3}+7 x^{2}-x+1$
d) $h(x)=4^{x}$

Investigate Power Functions

Graph the following using available technology. Make a sketch with labels.
$y=x, y=x^{3}, y=x^{5}, y=x^{7}$ and $y=x^{2}, y=x^{4}, y=x^{6}, y=x^{8}$

Power functions have similar characteristics depending on whether their degree is even or odd.
Odd Degree Power Functions: Graphs that curve from quadrant 3 to quadrant 1. The higher the exponent the closer the curve gets to the y-axis.

Even Degree Power Functions: Graphs that make a U-shape. The higher the exponent the U shape gets closer to the y-axis.

End behaviour: The end behaviour of a function is the behaviour of the \mathbf{y}-values as x increases (that is, as x approaches positive infinity, $\mathrm{x} \rightarrow \infty$) and as x decreases (that is, as x approaches negative infinity, $x \rightarrow-\infty$)

Example: Write each of the following power functions in the appropriate row of the second column of the table below. Give reasons for your choices.

$$
\begin{array}{llll}
y=2 x & y=5 x^{6} & y=-3 x^{2} & y=x^{7} \\
y=-4 x^{5} & y=x^{10} & y=-0.5 x^{8} &
\end{array}
$$

End Behaviour	Function	Reasons
Extends from quad 3 to quad 1		
Extends from quad 2 to quad 4		
Extends from quad 2 to quad 1		
Extends from quad 3 to quad 4		

Line Symmetry

A graph has line symmetry if there is a line $\mathbf{x}=\mathbf{a}$ that divides the graph into two equal parts such that one part is a reflection of the other in the line $\mathbf{x}=\mathbf{a}$.

- Even-degree power functions have line symmetry.

Point Symmetry

A graph has point symmetry about a point (a, b) if each part of the graph on one side of (a, b) can be rotated 180° to coincide with part of the graph on the other side of (a, b).

- Odd-degree power functions have a point of symmetry.

Example: For each of the following functions, state the domain and range, describe the end behaviour and identify any symmetry.
a)

b)

c)

Example: The volume of a helium balloon is given by the function $V(r)=\frac{4}{3} \pi r^{3}$, where r is the radius of the balloon, in meters and $r \in[0,5]$
a) Sketch $V(r)$.
b) State the domain and range in this situation.
c) Describe the similarities and difference between the graph of $\mathrm{V}(\mathrm{r})$ and the graph of $f(x)=x^{3}$

