| MHF4U Unit 1 | Polynomial | Functions |
|--------------|------------|-----------|
|--------------|------------|-----------|

| Section       | Pages   | Questions                                                                  |
|---------------|---------|----------------------------------------------------------------------------|
| Prereq Skills | 2 - 3   | # 1ace, 2cde, 3bce, 4, 5, 6, 7, 8ace, 9, 10b, 11b, 12 & Factoring Practice |
| 1.1           | 11 - 14 | # 1, 2, 3, 4, 5, 7, 8, 9(in class)                                         |
| 1.2           | 26 - 29 | # 1, 2, 3, 4abcf, 5, 6, 7, 8, 11(in class), 12                             |
| 1.3           | 39 - 41 | # 1bc, 2ab, 3, 5, 6ac, 7bd, 9(don't graph), 11a, 12ab, 14*                 |
| 1.4           | 49 - 52 | # 1acd, 2, 3, 4, 5, 6, 7abc, 8ac, 9, 10, 12, 14*                           |
| 1.5           | 62 - 64 | # 1, 2, 3, 4, 5, 7a(don't graph)bcd, 10ab                                  |
| 1.6           | 71 - 73 | # 1, 2, 3, 4, 5, 7, 9, 10*, 11*                                            |
| Review        | 74 - 77 | # 1-11, 12(don't graph), 13, 14, 15, 17, 18                                |
|               | 79      | # 8abd, 13                                                                 |

Note: Questions with an asterisk\* are extra questions that are optional for the daily homework. However, they are potential "extended-type" questions that could be included on a unit test.

# Unit 1 - Lesson 1

# **Prerequisite Skills**

### Grade 9

- Slope
- equation of a straight line
- x intercept
- y intercept
- first differences

# Grade 10

- factoring
- quadratic equation in vertex form
- second differences
- basic transformations of quadratic
- distance between two points in space

# Grade 11

- function notation
- transformations of functions
- domain and range
- vertical asymptotes and holes
- radicals and rational functions
- sketching functions

### **Function Notation**

To represent functions, we use notations such as f(x) and g(x). ex. Linear function: y = 2x + 1

In Function notation: f(x) = 2x + 1

The notation f(x) is read "f of x" or "f at x". It means that the expression that follows contains x as a variable.

For example: f(3) means substitute 3 for every x in the expression and solve for y, or f(3).

ex. Quadratic function:  $\begin{aligned} y &= x^2 - 4x + 7 \\ f(3) &= (3)^2 - 4(3) + 7 \\ f(3) &= 9 - 12 + 7 \\ f(3) &= 4 \end{aligned}$ 

Therefore when x = 3, y = 4 or f(3) = 4

For example: f(2a) means substitute 2a for every x in the expression and solve for y, or f(2a).

ex. Linear function: y = 3x - 10 find f(2a) f(2a) = 3(2a) - 10 f(2a) = 6a - 10

Therefore when x = 2a, y = 6a - 10 or f(2a) = 6a - 10we can create new equations or functions

Examples: Determine each value for the function  $f(x) = x^2 - 4x + 1$ 

a) 
$$f(0)$$
 b)  $f(-2)$  c)  $f(1/2)$ 

d) f(3x) e) -2f(2x)

### Slope and y-intercept of a line

The equation of a line, written in the form y = mx + b has m = slope and b = y-intercept Examples: Determine the slope and y-intercept of the following lines.

a) 
$$y = 3x - 1$$
  
m = 3  
b)  $2x - 7y = 14$   
c)  $y + 2 = 7(x - 1)$   
m = 3  
b = -1  
y = 2/7x - 2  
m = 2/7  
b = -2  
b = -9

#### Equation of a Line (y = mx + b)

To write the equation of a line, you need the slope and the y-intercept Recall: The Slope Formula

Given two points  $(x_1, y_1)$  and  $(x_2, y_2)$ , the slope is given by:  $m = \frac{\Delta y}{\Delta x}, m = \frac{y_2 - y_1}{x_2 - x_1}$ 

Examples: Determine the equation of the line that satisfies each set of conditions.

a) Slope is -1 and the y-intercept is 7.

$$y = -1x + 7$$

b) Slope is 2 and it passes through the point (1, -4).

| y = 2x + b    | or | $\mathbf{y} = \mathbf{m}(\mathbf{x} - \mathbf{p}) + \mathbf{q}$ |
|---------------|----|-----------------------------------------------------------------|
| -4 = 2(1) + b |    | y = 2(x - 1) - 4                                                |
| -4 = 2 + b    |    | y = 2x - 2 - 4                                                  |
| -6 = b        |    | y = 2x - 6                                                      |
| y = 2x - 6    |    |                                                                 |

c) Line passes through the points (-2, 0) and (2, 4).

$$m = \frac{4-0}{2-(-2)} = \frac{4}{4} = 1$$
  
y = m(x - p) + q  
y = 1(x - 2) + 4  
y = 1x - 2 + 4  
y = 1x + 2

# **Finite Differences**

Finite differences can be used to determine whether a function is linear, quadratic or neither. Finite differences can ONLY be used if the x-values in the table are increasing/decreasing by the same amount.

If the 1st differences are constant, the function is linear.

If the 2nd differences are constant, the function is quadratic.

Ex: Use finite differences to determine whether the functions below are linear, quadratic, or neither.

b)

| a) | x | Y | Ast Diff             |                      |
|----|---|---|----------------------|----------------------|
|    | 1 | 4 | 1 <sup>st</sup> Diff | 2 <sup>nd</sup> Diff |
|    | 2 | 1 |                      |                      |
|    | 3 | 0 |                      |                      |
|    | 4 | 1 |                      |                      |
|    | 5 | 4 |                      |                      |

| Х  | Y | 1 <sup>st</sup> Diff |                      |
|----|---|----------------------|----------------------|
| -2 | 9 |                      | 2 <sup>nd</sup> Diff |
| -1 | 7 |                      |                      |
| 0  | 5 |                      |                      |
| 1  | 3 |                      |                      |
| 2  | 1 |                      |                      |

## **Interval Notation**:

- Used to express a set of numbers
- Intervals that are infinite are  $\infty$  and  $-\infty$
- Square brackets indicate the end value is included, round brackets indicate the end value is not included
- A round bracket is always used with the  $\infty$  symbol

Sets of real numbers may be expressed in a number of ways.

a) Inequality

b) Interval Notation

c) Graphically (number line)

Ex.

 $-2 < x \le 4$ 

(-2, 4]

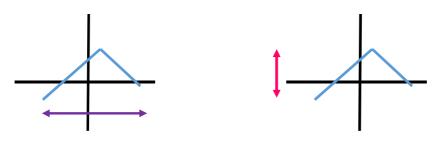


| Bracket<br>Interval      | Inequality                | Number Line                                                        |                               | In Words                                                                         |
|--------------------------|---------------------------|--------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------|
|                          |                           |                                                                    |                               | The set of all real numbers x such that                                          |
| (a, b)                   | a < x < b                 | $\begin{array}{c c} \bullet & \bullet \\ \hline a & b \end{array}$ | $\rightarrow$                 | x is greater than a and less than b                                              |
| (a, b]                   | $a < x \le b$             | a b                                                                | $\rightarrow$                 | <i>x</i> is greater than <i>a</i> and less than or equal to <i>b</i>             |
| [a, b)                   | $a \leq x < b$            | a b                                                                | R                             | <i>x</i> is greater than or equal to <i>a</i> and less than <i>b</i>             |
| [a, b]                   | $a \le x \le b$           | a b                                                                | $\overrightarrow{\mathbb{R}}$ | <i>x</i> is greater than or equal to <i>a</i> and less than or equal to <i>b</i> |
| [ <i>a</i> ,∞)           | x≥a                       | a                                                                  | R                             | x is greater than or equal to a                                                  |
| ( <i>−∞</i> , <i>a</i> ] | x ≤ a                     | a                                                                  | $\rightarrow$ $\mathbb{R}$    | x is less than or equal to a                                                     |
| ( <i>a</i> ,∞)           | x > a                     | <b>∢ 0</b><br>a                                                    | R                             | x is greater than a                                                              |
| ( <i>−∞</i> , <i>a</i> ) | x < a                     | <b>«</b>                                                           | $\overrightarrow{\mathbb{R}}$ | x is less than a                                                                 |
| $(-\infty,\infty)$       | $-\infty < \chi < \infty$ |                                                                    | R                             | x is an element of the real numbers                                              |

Example: All possible intervals for real numbers a and b, where a < b:

# **Domain and Range**

The domain of a function is the **set of all first coordinates (x-values)** of the relation. The range of a function is the **set of all second coordinates (y-values)** of the function.

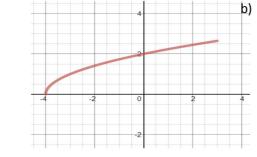


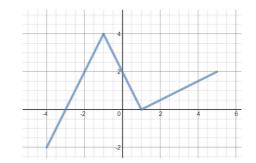
Examples:

Domain

1. Given the following relations, state the domain and range.

a)

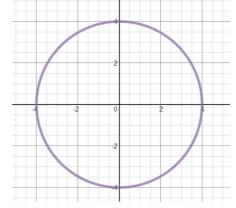


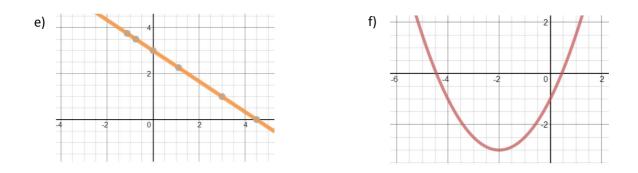


Range

c)  $\{(1, 2), (3, 4), (4, 6), (7, 10)\}$ 







2. Given the equation of the following functions, sketch each function and state their domain and range.

a) 
$$y = x - 5$$
  
b)  $y = x^2 + 7$   
c)  $y = -2(x + 4)^2 + 3$ 

d) 
$$y = \sqrt{x-3}$$
 e)  $y = \frac{1}{x+3}$ 

# **Quadratic Functions**

There are 3 forms used to model quadratic functions.

| Form          | Model                                                                     | Properties                                                                                                                                                                                                                        | Example                                                                                                                                   |
|---------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Standard Form | $y = ax^2 + bx + c$<br>where a, b, & c<br>are constants<br>and $a\neq 0$  | <ul> <li>If a &gt; 0, the parabola opens<br/>up and has a minimum.</li> <li>If a &lt; 0, the parabola opens<br/>down and has a maximum</li> <li>c is the y-intercept</li> </ul>                                                   | $y = 3x^{2} - 4x + 7$<br>a = 3 and 3 >0, so the<br>parabola opens up<br>and has a minimum.<br>7 is the y-intercept.                       |
| Factored Form | y = a(x - r)(x - s)<br>where a, r & s<br>are constants<br>and a $\neq 0$  | <ul> <li>If a &gt; 0, the parabola opens<br/>up and has a minimum.</li> <li>If a &lt; 0, the parabola opens<br/>down and has a maximum</li> <li>Values for r and s are used<br/>to find the x-intercepts or<br/>zeros.</li> </ul> | y = -2(x + 4)(x - 3)<br>a = -2 and -2 < 0, so<br>the parabola opens<br>down and has a<br>maximum.<br>The x-intercepts are<br>at -4 and 3. |
| Vertex Form   | $y = a(x - p)^2 + q$<br>where a, p & q<br>are constants<br>and $a \neq 0$ | <ul> <li>If a &gt; 0, the parabola opens up and has a minimum.</li> <li>If a &lt; 0, the parabola opens down and has a maximum</li> <li>(p, q) is the vertex</li> </ul>                                                           | $y = 0.5(x - 3)^{2} + 5$<br>a = 0.5 and 0.5 > 0,<br>so the parabola opens<br>up and has a<br>minimum.<br>The vertex is at (3,5).          |

Examples: Determine the equation of a quadratic function that satisfies each set of conditions.

a) x-intercepts at -2 and -6, y-intercept at 24.

b) x-intercept at -1, passing through the point (-2, 6).

c) Vertex at (-4, 7) and passing through the point (1, 12).

### **Factoring Polynomials**

Always look for a greatest common factor (GCF) first!

Ex.  $8x^3 + 6x^2 = 2x^2(4x + 3)$ 

If the expression is a binomial, look for a Difference of Squares.

Ex. 
$$x^2 - 25 = (x - 5)(x + 5)$$

If the expression is a trinomial in the form  $x^2 + bx + c$ , look for the Sum (b) and Product (c).

Ex. 1.  $x^2 + 9x + 20 = (x + 4)(x + 5)$ 

| Add | Mult  |
|-----|-------|
| 9   | 20    |
| 7   | 1, 20 |
| -7  | 2, 10 |
| 5   | 4, 5  |

If the expression is a trinomial in the form  $ax^2 + bx + c$ , look for the Sum (b) and Product (a x c), use decomposition approach.

| Ex. 2. $2x^2 - 5x + 3 = 2x^2 - 2x - 3x + 3$ | Add | Mult   |
|---------------------------------------------|-----|--------|
| 2x(x-1) - 3(x-1)                            | -5  | 6      |
| (x-1)(2x-3)                                 | 7   | 1,6    |
|                                             | -7  | -1, -6 |
|                                             | 5   | 2, 3   |
|                                             | -5  | -2, -3 |

Remember to factor fully where possible.

Ex. 3. 
$$3x^2 - 48 = 3(x^2 - 16)$$
  
 $3(x - 4)(x + 4)$ 

Ex. 4. 
$$2x^3 - 14x^2 + 24x = 2x(x^2 - 7x + 12)$$
  
 $2x(x - 4)(x - 3)$ 

Examples: Factor Fully

a) 
$$3a^4b^2 - 6a^2b^3 + 12ab^4$$
 b)  $36x^2 - 49$  c)  $9a^2 - 1$ 

d) 
$$x^2 - 5x - 14$$
 e)  $6a^2 - 9a - 6$  f)  $10y^3 + 5y^2 - 5y^3$ 

g) 
$$6x^2 - 22x - 40$$
 h)  $4a^2 - 25b^2$ 

Determining x-intercepts or roots of quadratic functions.

Standard form – factor if possible, set the factors equal to zero.

Ex.  $y = x^2 + 10x + 21 = 0$ y = (x + 3) (x + 7) = 0x = -3, or x = -7

Standard form – factor is not possible, use  $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$  (quadratic equation)

Ex. 
$$2x^2 - 4x - 10$$

$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(2)(-10)}}{2(2)}$$
$$x = \frac{4 \pm \sqrt{16 + 80}}{4}$$
$$x = \frac{4 \pm \sqrt{96}}{4}$$
$$x = 3.45 \text{ or } x = -1.45$$

Vertex form – set equation equal to zero, isolate x.

Examples: Determine the x-intercepts, the vertex, the direction of opening, and the domain and range of each quadratic function. Sketch a graph of the function.

a) 
$$y = 2(x - 2)(x + 5)$$
  
b)  $y = 3(x - 5)^2 - 9$ 

c) 
$$y = -3x^2 + 17x + 6$$
  
d)  $y = 2x^2 - 12x + 7$ 

Transformations y = af(k(x-d)) + c

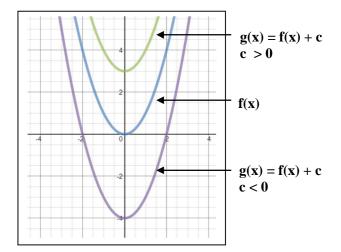
### Translations

A transformation that results in a shift of the original figure without changing its shape.

## Vertical Translation of **c** units:

The graph of the function  $\mathbf{g}(\mathbf{x}) = \mathbf{f}(\mathbf{x}) + \mathbf{c}$ 

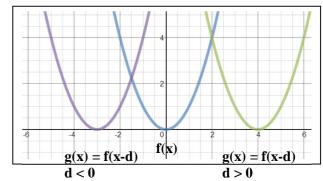
- when c is positive, the translation is UP by c units.
- when c is negative, the translation is DOWN by c units.



#### Horizontal Translation of **d** units:

The graph of the function g(x) = f(x - d)

- when d > 0, the translation is to the RIGHT by d units.
- when d < 0, the translation is to the LEFT by d units.

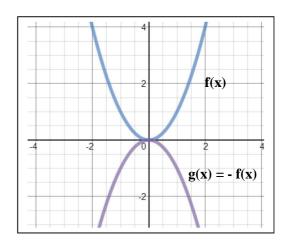


## Reflections

A transformation in which a figure is reflected over a reflection line.

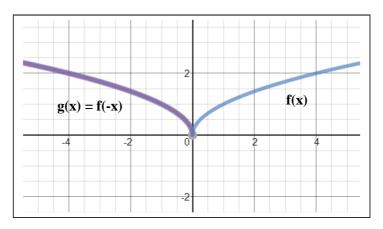
Reflection in the X-axis/Vertical Reflection:

The graph of g(x) = -f(x)



Reflection in the Y-axis/Horizontal Reflection:

The graph of g(x) = f(-x)



# Vertical Stretch and Compression:

The graph of the function g(x) = af(x), a>0

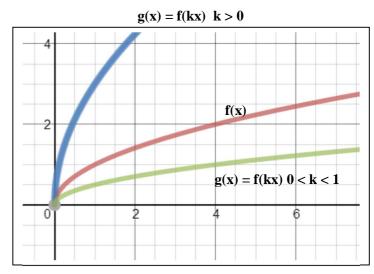
- when |a|>1, there is a VERTICAL STRETCH by a factor of a.
- when 0<|a|<1, there is a VERTICAL COMPRESSION by a factor of a.
- Points on the x-axis are invariant.



### **Horizontal Stretch and Compression:**

The graph of the function g(x) = f(kx), k > 0

- when |1/k| >1, there is an EXPANSION (STRETCH) by a factor of 1/k.
- when  $0 < |\mathbf{k}| < 1$ , there is a COMPRESSION by a factor of 1/k.



Examples: Identify each transformation of the function y = f(x).

a) 
$$y = 2f(x) + 1$$
  
b)  $y = -\frac{1}{3}f(x-2)$ 

c) 
$$y = f(-3x)$$
 d)  $y = -2 f(3x + 3) - 4$ 

- Examples: Write an equation for the transformed function of each base function. State the domain and range of each.
  - a)  $f(x) = x^2$ , is reflected in the x-axis, stretched vertically by a factor of 3, translated to the left 6 units and down 5 units.
  - b)  $f(x) = \sqrt{x}$ , is compressed horizontally by a factor of 0.5, stretched vertically by a factor of 3, reflected in the y-axis, and translated right 4 units.