MHF4U Unit 1 Polynomial Functions

Section	Pages	Questions
Prereq Skills	$2-3$	\# 1ace, 2cde, 3bce, 4, 5, 6, 7, 8ace, 9, 10b, 11b, 12 \& Factoring Practice
1.1	$11-14$	$\# 1,2,3,4,5,7,8,9$ (in class)
1.2	$26-29$	$\# 1,2,3,4 \mathrm{abcf}, 5,6,7,8,11$ (in class), 12
1.3	$39-41$	$\# 1 \mathrm{bc}, 2 \mathrm{ab}, 3,5,6 \mathrm{ac}, 7 \mathrm{bd}, 9$ (don't graph), 11a, 12ab, 14*
1.4	$49-52$	$\#$ acd, 2, 3, 4, 5, 6, 7abc, 8ac, 9, 10, 12, 14*
1.5	$62-64$	$\# 1,2,3,4,5,7 \mathrm{a}$ (don't graph)bcd, 10ab
1.6	$71-73$	$\# 1,2,3,4,5,7,9,10^{*}, 11^{*}$
Review	$74-77$	\# 1-11, 12(don't graph), 13, 14, 15, 17, 18 \# 8abd, 13

Note: Questions with an asterisk* are extra questions that are optional for the daily homework. However, they are potential "extended-type" questions that could be included on a unit test.

Unit 1 - Lesson 1

Prerequisite Skills

Grade 9

- Slope
- equation of a straight line
- x intercept
- y intercept
- first differences

Grade 10

- factoring
- quadratic equation in vertex form
- second differences
- basic transformations of quadratic
- distance between two points in space

Grade 11

- function notation
- transformations of functions
- domain and range
- vertical asymptotes and holes
- radicals and rational functions
- sketching functions

Function Notation

To represent functions, we use notations such as $f(x)$ and $g(x)$.
ex. Linear function: $y=2 x+1$
In Function notation: $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+1$
The notation $f(x)$ is read " f of x " or " f at x ".
It means that the expression that follows contains x as a variable.
For example: $f(3)$ means substitute 3 for every x in the expression and solve for y, or $f(3)$.
ex. Quadratic function:

$$
\begin{aligned}
& y=x^{2}-4 x+7 \\
& f(3)=(3)^{2}-4(3)+7 \\
& f(3)=9-12+7 \\
& f(3)=4
\end{aligned}
$$

Therefore when $\mathrm{x}=3, \mathrm{y}=4$ or $\mathrm{f}(3)=4$
For example: $\mathrm{f}(2 \mathrm{a})$ means substitute 2 a for every x in the expression and solve for y , or $\mathrm{f}(2 \mathrm{a})$.
ex. Linear function: $y=3 x-10$
find $f(2 a)$
$f(2 a)=3(2 a)-10$
$f(2 a)=6 a-10$
Therefore when $\mathrm{x}=2 \mathrm{a}, \mathrm{y}=6 \mathrm{a}-10$ or $\mathrm{f}(2 \mathrm{a})=6 \mathrm{a}-10$ we can create new equations or functions

Examples: Determine each value for the function $f(x)=x^{2}-4 x+1$
a) $f(0)$
b) $f(-2)$
c) $f(1 / 2)$
d) $f(3 x)$
e) $-2 f(2 x)$

Slope and y-intercept of a line

The equation of a line, written in the form $y=m x+b$ has $m=$ slope and $b=y$-intercept Examples: Determine the slope and y-intercept of the following lines.
a) $y=3 x-1$
b) $2 x-7 y=14$
c) $y+2=7(x-1)$
$\mathrm{m}=3$
$7 y=2 x-14$
$y+2=7 x-7$
$b=-1$
$y=2 / 7 x-2$
$y=7 x-9$
$\mathrm{m}=2 / 7$
$\mathrm{m}=7$
$b=-2$
$b=-9$

Equation of a Line ($\mathbf{y}=\mathbf{m x}+\mathbf{b}$)

To write the equation of a line, you need the slope and the y-intercept
Recall: The Slope Formula
Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, the slope is given by: $m=\frac{\Delta y}{\Delta x}, m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Examples: Determine the equation of the line that satisfies each set of conditions.
a) Slope is -1 and the y-intercept is 7 .

$$
y=-1 x+7
$$

b) Slope is 2 and it passes through the point (1, -4).

$$
\begin{array}{ll}
y=2 x+b & \text { or } \\
-4=2(1)+b & \\
-4=2+b & y=2(x-1)-4 \\
-6=b & y=2 x-2-4 \\
y=2 x-6 & y=2 x-6
\end{array}
$$

c) Line passes through the points $(-2,0)$ and $(2,4)$.

$$
\begin{aligned}
& m=\frac{4-0}{2-(-2)}=\frac{4}{4}=1 \\
& y=m(x-p)+q \\
& y=1(x-2)+4 \\
& y=1 x-2+4 \\
& y=1 x+2
\end{aligned}
$$

Finite Differences

Finite differences can be used to determine whether a function is linear, quadratic or neither. Finite differences can ONLY be used if the x-values in the table are increasing/decreasing by the same amount.
If the 1 st differences are constant, the function is linear.
If the 2 nd differences are constant, the function is quadratic.
Ex: Use finite differences to determine whether the functions below are linear, quadratic, or neither.
a)

X	Y		
		$1^{\text {st }}$ Diff	
1	4		2nd Diff
2	1		
3			
	0		
4	1		
5	4		
	4		

b)

Interval Notation:

- Used to express a set of numbers
- Intervals that are infinite are ∞ and $-\infty$
- Square brackets indicate the end value is included, round brackets indicate the end value is not included
- A round bracket is always used with the ∞ symbol

Sets of real numbers may be expressed in a number of ways.
a) Inequality
b) Interval Notation
c) Graphically (number line)

Ex.
$-2<x \leq 4$

Example: All possible intervals for real numbers a and b, where $a<b$:

Bracket Interval	Inequality	Number Line	In Words
			The set of all real numbers x such that
(a, b)	$a<x<b$		x is greater than a and less than b
$(a, b]$	$a<x \leq b$		x is greater than a and less than or equal to b
$[a, b)$	$a \leq x<b$		x is greater than or equal to a and less than b
[a, b]	$a \leq x \leq b$		x is greater than or equal to a and less than or equal to b
$[a, \infty)$	$x \geq a$		x is greater than or equal to a
$(-\infty, a]$	$x \leq a$		x is less than or equal to a
(a, ∞)	$x>a$		x is greater than a
$(-\infty, a)$	$x<a$		x is less than a
$(-\infty, \infty)$	$-\infty<x<\infty$		x is an element of the real numbers

Domain and Range

The domain of a function is the set of all first coordinates (\mathbf{x}-values) of the relation. The range of a function is the set of all second coordinates (\mathbf{y}-values) of the function.

Domain

Range

Examples:

1. Given the following relations, state the domain and range.
a)

b)

c) $\{(1,2),(3,4),(4,6),(7,10)\}$
d)

e)

f)

2. Given the equation of the following functions, sketch each function and state their domain and range.
a) $y=x-5$
b) $y=x^{2}+7$
c) $y=-2(x+4)^{2}+3$
d) $y=\sqrt{x-3}$
e) $y=\frac{1}{x+3}$

Quadratic Functions

There are 3 forms used to model quadratic functions.

Form	Model	Properties	Example
Standard Form	$y=a x^{2}+b x+c$ where $\mathrm{a}, \mathrm{b}, \& \mathrm{c}$ are constants and $\mathrm{a} \neq 0$	- If a >0, the parabola opens up and has a minimum. - If a < 0 , the parabola opens down and has a maximum - c is the y -intercept	$y=3 x^{2}-4 x+7$ $\mathrm{a}=3$ and $3>0$, so the parabola opens up and has a minimum. 7 is the y-intercept.
Factored Form	$y=a(x-r)(x-s)$ where a, r \& s are constants and $\mathrm{a} \neq 0$	- If a >0, the parabola opens up and has a minimum. - If a < 0 , the parabola opens down and has a maximum - Values for r and s are used to find the x -intercepts or zeros.	$y=-2(x+4)(x-3)$ $a=-2$ and $-2<0$, so the parabola opens down and has a maximum. The x-intercepts are at -4 and 3 .
Vertex Form	$y=a(x-p)^{2}+q$ where a, p \& q are constants and $\mathrm{a} \neq 0$	- If a > 0, the parabola opens up and has a minimum. - If a < 0 , the parabola opens down and has a maximum - (p, q) is the vertex	$\begin{aligned} & y=0.5(x-3)^{2}+5 \\ & a=0.5 \text { and } 0.5>0, \end{aligned}$ so the parabola opens up and has a minimum. The vertex is at $(3,5)$.

Examples: Determine the equation of a quadratic function that satisfies each set of conditions.
a) x-intercepts at -2 and $-6, y$-intercept at 24 .
b) x-intercept at -1 , passing through the point $(-2,6)$.
c) Vertex at $(-4,7)$ and passing through the point $(1,12)$.

Factoring Polynomials

Always look for a greatest common factor (GCF) first!
Ex. $8 x^{3}+6 x^{2}=2 x^{2}(4 x+3)$
If the expression is a binomial, look for a Difference of Squares.
Ex. $x^{2}-25=(x-5)(x+5)$
If the expression is a trinomial in the form $x^{2}+b x+c$, look for the Sum (b) and Product (c).
Ex. 1. $x^{2}+9 x+20=(x+4)(x+5)$

Add 9	Mult 20
7	1,20
-7	2,10
5	4,5

If the expression is a trinomial in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$, look for the Sum (b) and Product (ax c), use decomposition approach.

Ex. 2. $2 x^{2}-5 x+3=2 x^{2}-2 x-3 x+3$

$$
\begin{aligned}
& 2 x(x-1)-3(x-1) \\
& (x-1)(2 x-3)
\end{aligned}
$$

Add -5	Mult 6
7	1,6
-7	$-1,-6$
5	2,3
-5	$-2,-3$

Remember to factor fully where possible.
Ex. 3. $3 x^{2}-48=3\left(x^{2}-16\right)$
$3(x-4)(x+4)$

Ex. 4. $\quad \begin{aligned} 2 x^{3}-14 x^{2}+24 x= & 2 x\left(x^{2}-7 x+12\right) \\ & 2 x(x-4)(x-3)\end{aligned}$

Examples: Factor Fully
a) $3 a^{4} b^{2}-6 a^{2} b^{3}+12 a b^{4}$
b) $36 x^{2}-49$
c) $9 a^{2}-1$
d) $x^{2}-5 x-14$
e) $6 a^{2}-9 a-6$
f) $10 y^{3}+5 y^{2}-5 y^{3}$
g) $6 x^{2}-22 x-40$
h) $4 a^{2}-25 b^{2}$

Determining x-intercepts or roots of quadratic functions.
Standard form - factor if possible, set the factors equal to zero.
Ex. $\quad y=x^{2}+10 x+21=0$

$$
y=(x+3)(x+7)=0
$$

$$
x=-3 \text {, or } x=-7
$$

Standard form - factor is not possible, use $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ (quadratic equation)
Ex. $2 \mathrm{x}^{2}-4 \mathrm{x}-10$

$$
\begin{aligned}
& x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(2)(-10)}}{2(2)} \\
& x=\frac{4 \pm \sqrt{16+80}}{4} \\
& x=\frac{4 \pm \sqrt{96}}{4} \\
& x=3.45 \text { or } \mathrm{x}=-1.45
\end{aligned}
$$

Vertex form - set equation equal to zero, isolate x .
Examples: Determine the x -intercepts, the vertex, the direction of opening, and the domain and range of each quadratic function. Sketch a graph of the function.
a) $y=2(x-2)(x+5)$
b) $y=3(x-5)^{2}-9$
c) $y=-3 x^{2}+17 x+6$
d) $y=2 x^{2}-12 x+7$

Transformations

$$
y=a f(k(x-d))+c
$$

Translations

A transformation that results in a shift of the original figure without changing its shape.
Vertical Translation of \mathbf{c} units:
The graph of the function $\mathbf{g}(\mathbf{x})=\mathbf{f}(\mathbf{x})+\mathbf{c}$

- when c is positive, the translation is UP by c units.
- when c is negative, the translation is DOWN by c units.

Horizontal Translation of \mathbf{d} units:
The graph of the function $\mathbf{g}(\mathbf{x})=\mathbf{f}(\mathbf{x}-\mathbf{d})$

- when $\mathrm{d}>0$, the translation is to the RIGHT by d units.
- when $\mathrm{d}<0$, the translation is to the LEFT by d units.

Reflections

A transformation in which a figure is reflected over a reflection line.
Reflection in the X-axis/Vertical Reflection:
The graph of $g(x)=-f(x)$

Reflection in the Y-axis/Horizontal Reflection:
The graph of $\mathrm{g}(\mathrm{x})=\mathrm{f}(-\mathrm{x})$

Vertical Stretch and Compression:

The graph of the function $g(x)=a f(x), a>0$

- when $|a|>1$, there is a VERTICAL STRETCH by a factor of a.
- when $0<|a|<1$, there is a VERTICAL COMPRESSION by a factor of a.
- Points on the x -axis are invariant.

Horizontal Stretch and Compression:

The graph of the function $g(x)=f(k x), k>0$

- when $|1 / \mathrm{k}|>1$, there is an EXPANSION (STRETCH) by a factor of $1 / \mathrm{k}$.
- when $0<|\mathrm{k}|<1$, there is a COMPRESSION by a factor of $1 / \mathrm{k}$.

Examples: Identify each transformation of the function $y=f(x)$.
a) $y=2 f(x)+1$
b) $y=-\frac{1}{3} f(x-2)$
c) $y=f(-3 x)$
d) $y=-2 f(3 x+3)-4$

Examples: Write an equation for the transformed function of each base function. State the domain and range of each.
a) $f(x)=x^{2}$, is reflected in the x-axis, stretched vertically by a factor of 3 , translated to the left 6 units and down 5 units.
b) $f(x)=\sqrt{x}$, is compressed horizontally by a factor of 0.5 , stretched vertically by a factor of 3 , reflected in the y-axis, and translated right 4 units.

