Uniform Acceleration :

Up to this point we have averaged our calculations, using the assumption that the object in question was always moving at a constant speed. While this can be useful, and comes with the benefit of simplified math, it is time we start increasing the level of application.

Uniform Acceleration : Changing from one velocity to a next at a constant rate.

$$
\vec{a}=\frac{\Delta \vec{v}}{\Delta t} \quad \vec{a}=\frac{\vec{v}_{f}-\vec{v}_{\mathrm{i}}}{\Delta t}
$$

recall in math that Δ is used to represent a change, and we will use the subscripts " f " and " i " to represent the final and initial velocities respectively.
**Note - Acceleration is a vector quantity, and therefore we must pay close attention to the direction of the velocities given in the question **

Ex. \#1

A motorcycle is traveling at $10 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ and accelerates to $20 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ in a time of 5 seconds. Determine the acceleration of the motorcycle.
givens
$\vec{v}_{f}=20 \frac{\mathrm{~m}}{\mathrm{~s}}[E] \quad \vec{a}=\frac{20 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{E}]-10 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{E}]}{5 \mathrm{~s}}$
$\vec{v}_{i}=10 \frac{\mathrm{~m}}{\mathrm{~s}}[E]$
$\vec{a}=\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{E}]}{5 \mathrm{~s}}$
$t=5 \mathrm{~s}$
$\vec{a}=2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}[E] \longrightarrow \begin{gathered}\text { a positive answer means that the } \\ \text { velocity was increasing over time }\end{gathered}$

Ex. \#2
A motorcycle is traveling at $10 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$, turns and accelerates to $10 \mathrm{~m} / \mathrm{s}$ [W] in a time of 5 seconds. Determine the acceleration of the motorcycle.
givens

$$
\begin{array}{ll}
\vec{v}_{f}=10 \frac{\mathrm{~m}}{\mathrm{~s}}[W] & \vec{a}=\frac{10 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{~W}]-10 \frac{\mathrm{~m}}{\mathrm{~s}}[\mathrm{E}]}{5 \mathrm{~s}}
\end{array} \quad \begin{aligned}
& \text { we can only continue to solve the } \\
& \text { problem if the directions are the } \\
& \text { same, these are not, so we must fix } \\
& \text { the directions to be the same. }
\end{aligned}
$$

We can rearrange our acceleration equation so that we can solve for the other variables if given the acceleration in the problem.

Some other very useful equations

$\vec{d}=\vec{v}_{i} t+\frac{1}{2} \vec{a} t^{2}$ rearranging this one leads to solving the quadratic equation for time.

Assigned Problems - page 36-3 to 6

- page 46-1 to 5, 7

Review for Chapter 1 Test - page 49-1 to 3, 4bc, 5ab, 7 to $9,12,14$ to 16,20

