Section 1.3

Two Dimensional Motion :

We have looked at 1D motion, now we need to expand into 2D.

For example, let us say that a dog escapes from its owner and takes off running 5 m [N] and then hangs a right and runs 12 m [E].
a) What is the total distance traveled by the dog ?
b) What is the dog's displacement from its owner?

Sol'n a)

Distance traveled is not impacted by direction of travel. So we simply add the distances ran.
$d=5+12=17 m$

Sol'n b)

Displacement is impacted by direction of travel. So let's look at what happened.

Owner

2D motion leads to the creation of a Pythagorean triangle. So let's use Pythagorean theorem to determine the unknown displacement.
$d=\sqrt{5^{2}+12^{2}}$
$d=\sqrt{169}$
$d=13 m$

But because the motion is not along one of the major axis, we need to determine the reference angle as well. ${ }^{* *}$ Note ${ }^{* *}$ you cannot just say NE -- this applies only when the reference angle is a perfect 45°. In other words, the legs of the triangle must be exactly the same.

To determine the reference angle we make use of trigonometry.

$\operatorname{Tan} A=\frac{o p p}{a d j}$
Tan $A=\frac{12^{\text {East }}}{5_{\text {North }}}$
$A=\tan ^{-1}\left(\frac{12}{5}\right)$
$A=67.4^{\circ} \mathrm{E}$ of N

So, putting our two pieces together we get $\vec{d}=13 \mathrm{~m}\left[67.4^{\circ} \mathrm{E}\right.$ of N$]$

What if there are more than 2 motions in the question?
For example:
Let's say Dora the Explorer gets side swiped by a jeep and is stumbling around a parking lot. If she staggers 15 feet North of the collision point, then 10 feet to the East, followed by 3 feet to the South and then 2 feet to the west. Where should Boots the monkey put the mattress to cushion her fall?

Sol'n
Let's start with a quick diagram.

A

Remember, we only care about where we started and where we finished. Let's make the Pythagorean triangle. The boxed sides are all that we need, so let's determine the unknown side lengths.
$d_{N}=15-3=12 \mathrm{ft}[\mathrm{N}]$
$d_{E}=10-2=10 \mathrm{ft}[\mathrm{E}]$

Find the displacement start to finish.
$d=\sqrt{12^{2}+10^{2}}$
$d=\sqrt{244}$
$d=15.62 \mathrm{ft}$

Find the reference angle

$$
\begin{aligned}
& \operatorname{Tan} A=\frac{\text { opp }}{\text { adj }} \\
& \text { Tan } A=\frac{10^{\text {East }}}{12_{\text {North }}}
\end{aligned}
$$

$$
A=\tan ^{-1}\left(\frac{10}{12}\right)
$$

$$
A=39.8^{\circ} \mathrm{E} \text { of } \mathrm{N}
$$

So, putting our two pieces together we get $\vec{d}=15.62 \mathrm{~m}\left[39.8^{\circ} \mathrm{E}\right.$ of N$]$

Assigned questions - Two dimensional problem generated by class.

