Section	Pages	Questions
Prereq Skills	$250-251$	\#1ac, 2ac, 3ace, 4ace, 5, 6, 8(graph the function), 9(graph the function), 10, 11, 12ab, 15
5.1	$258-259$	\#1ad, 2ad, 3ad, 4ad, 5bc, 6bc, 7ab, 8ab, 9, 10, 11, 12, 17
5.2	$275-279$	\#1abce, , 3, 4, 5(don't graph), 6(don't graph), 8ab, 9ab, 10, 11, 12a, 13a, 19a
5.3	$267-269$	\#7, 9a, 10, 13, 15*, 16*, 18
5.4	$287-289$	\#1abe, 3ab, 5be, 7cd, 9, 10, 11, 12, 13bc, 14, 16, 17, 18, 19, 20, 22*, 26
5.5	$296-299$	\#1, 3, 4abef, 6, 10, 11ab, 12
Review	$300-301$ $302-303$	\#1, 2, 3, 4, 6a, 7, 8, 9, 10, 11, 12 \#2-7, 9-15

Note: Questions with an asterisk* are extra questions that are optional for the daily homework. However, they are potential "extended-type" questions that could be included on a unit test.

Graph of $y=\sin x$ for $-360^{\circ} \leq x \leq 360^{\circ}$.

x	y
-360°	0
-270°	1
-180°	0
-90°	-1
0°	0
90°	1
180°	0
270°	-1
360°	0

Key Features

Period $=360^{\circ}$,
Max for $\mathrm{y}=1$,
Min for $\mathrm{y}=-1$
Amplitude $=1$,
Phase Shift $=0^{\circ}$
Vertical Displacement $=0$
x-intercepts: $-360^{\circ},-180^{\circ}, 0^{\circ}, 180^{\circ}, 360^{\circ}$
y-intercept: 0
Domain: $\left\{x \in R \mid-360^{\circ} \leq x \leq 360^{\circ}\right\}$
Range: $\{y \in R \mid-1 \leq y \leq 1\}$

Graph of $y=\cos x$ for $-360^{\circ} \leq x \leq 360^{\circ}$.

x	y
-360°	
-270°	
-180°	
-90°	
0°	
90°	
180°	
270°	
360°	

Period $=$

Max for $\mathrm{y}=$
Min for $\mathrm{y}=$
Amplitude $=$
Phase Shift =
Vertical Displacement $=$
x -intercepts:
y-intercept:
Domain:
Range:

Transformations of Sinusoidal Functions

$y=a \sin (k(\theta-d))+c \quad y=a \cos (k(\theta-d))+c$
$\mathrm{a}=$ amplitude (vertical stretch or compression)
$\mathrm{k}=$ horizontal stretch or compression
$\mathrm{d}=$ phase shift (horizontal translation)
$\mathrm{c}=$ vertical displacement (vertical translation)
Period $=360^{\circ} / \mathrm{k}$ (time needed to complete one cycle or wavelength)
Frequency $=1 /$ Period (number of cycles per unit of time)

Example: Describe the transformations that must be applied to the graph of $f(x)=\sin x$ to obtain the graph $g(x)=-0.5 \sin \left[3\left(x+150^{\circ}\right)\right]+3$. Graph the functions $f(x)$ and $g(x)$ on the same grid and state the domain and range.

Example: Describe the transformations that must be applied to the graph of $f(x)=\cos x$ to obtain the graph $g(x)=2 \cos \left[2\left(x-120^{\circ}\right)\right]-2$. Graph the functions $f(x)$ and $g(x)$ and state the domain and range.

Graph of $\mathrm{y}=\tan x$ for $-360^{\circ} \leq \mathrm{x} \leq 360^{\circ}$.

x	y
-360°	
-315°	
-270°	
-225°	
-180°	
-135°	
-90°	
-45°	
0°	
45°	
90°	
135°	
180°	
225°	
270°	
315°	
360°	

Key Features

Period $=$
Max for $\mathrm{y}=$
Min for $\mathrm{y}=$
Amplitude $=$
Phase Shift =
Vertical Displacement $=$
x -intercepts:
y-intercept:
Domain:
Range:

Section 5.1
Graphs of Sine, Cosine, and Tangent Functions

Graph of $y=\sin \theta$ for $-2 \pi \leq \theta \leq 2 \pi$

θ	θ	y
-360°	-2π	
-270°	$-3 \pi / 2$	
-180°	$-\pi$	
-90°	$-\pi / 2$	
0°	0	
90°	$\pi / 2$	
180°	π	
270°	$3 \pi / 2$	
360°	2π	

Graph of $\mathrm{y}=\cos \theta$ for $-2 \pi \leq \theta \leq 2 \pi$.

θ	y

Graph of $\mathrm{y}=\tan \theta$ for $-2 \pi \leq \mathrm{x} \leq 2 \pi$.

θ	y

Basic Transformations of $y=\sin \theta$ and $y=\cos \theta$ still hold true for angles measured in radians.
Amplitude $\Rightarrow y=a \sin \theta$ and $y=a \cos \theta$

- "a" is the amplitude of the function.
- When "a" is negative, a reflection exists over the x -axis.
- $a=$ (maximum- minimum) $/ 2$

Vertical Displacement $\Rightarrow y=\sin \theta+c$ and $y=\cos \theta+c$

- The function moves up or down along the y-axis by "c" units.
- $\mathrm{c}=($ maximum + minimum $) / 2$

Phase Shift $\Rightarrow y=\sin (\theta-d)$ and $y=\cos (\theta-d)$

- The function moves left or right along the θ-axis by "d" units.

Period Change $\Rightarrow y=\sin k \theta$ and $y=\cos k \theta$

- The function has a new period given by $\mathrm{p}=2 \pi / \mathrm{k}$.
- $\operatorname{Sok}=2 \pi / \mathrm{p}$

Example: Transform the graph of $y=\sin x$ to obtain $y=\sin x-2$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: Transform the graph of $y=\cos x$ to obtain $y=-3 \cos x$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: Transform the graph of $y=\sin x$ to obtain $y=\sin \left(x-\frac{\pi}{3}\right)$, over two cycles.

Amplitude:
Domain: Range:
Vert.Displacement:
Example: Transform the graph of $y=\cos x$ to obtain $y=\cos 2 x$, over two cycles.

Amplitude:
Domain:

Period:
Range:

Phase Shift:
Vert.Displacement:

Example: A cosine function has a period of 6π, a maximum value of 5 , and a minimum value of -9 . Assuming there is no phase shift, determine an equation representing this cosine function in the form $y=\operatorname{acos}(k x)+c$.

Example: One cycle of a sine function begins at $x=-\pi / 4$ and ends at $x=5 \pi / 4$.
a) Determine the period of the function.
b) Determine the phase shift of the function.
c) Write the equation of the function in the form $y=\sin [k(x-d)]$

Below is the graph of $y=\sin x$. Recalling that $\csc x=1 / \sin x$, sketch the graph of $y=\csc x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\sin x$	$\csc x$
0	0	
$\pi / 6$	0.5	
$\pi / 3$	0.866	
$\pi / 2$	1	
$2 \pi / 3$	0.866	
$5 \pi / 6$	0.5	
π	0	
$7 \pi / 6$	-0.5	
$4 \pi / 3$	-0.866	
$3 \pi / 2$	-1	
$5 \pi / 3$	-0.886	
$11 \pi / 6$	-0.5	
2π	0	

Below is the graph of $y=\cos x$. Recalling that $\sec x=1 / \cos x$, sketch the graph of $y=\sec x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\cos x$	$\sec x$
0	1	
$\pi / 6$	0.866	
$\pi / 3$	0.5	
$\pi / 2$	0	
$2 \pi / 3$	-0.5	
$5 \pi / 6$	-0.866	
π	-1	
$7 \pi / 6$	-0.886	
$4 \pi / 3$	-0.5	
$3 \pi / 2$	0	
$5 \pi / 3$	0.5	
$11 \pi / 6$	0.866	
2π	1	

Below is the graph of $y=\tan x$. Recalling that $\cot x=1 / \tan x$, sketch the graph of $y=\cot x$ in the interval $x \in[-2 \pi, 2 \pi]$.

x	$\tan x$	$\cot x$
0	0	
$\pi / 4$	1	
$\pi / 2$	undef	
$3 \pi / 4$	-1	
π	0	
$5 \pi / 4$	1	
$3 \pi / 2$	undef	
$7 \pi / 4$	-1	
2π	0	

Complete the summary table.

Property	Cosecant $y=\csc x$	Secant $y=\sec x$	Cotangent $y=\cot x$
Domain			
Range			
Period			
Equations of Asymptotes			
Points of intersection with corresponding Primary Trig Functions			

Modelling with Reciprocal Relationships

Example: When the sun is directly overhead, its rays pass through the atmosphere as shown. Call this 1 unit of atmosphere. When the Sun is not overhead, but is inclined at angle x to the surface of the Earth, its rays pass through more air before they reach sea level. Call this y units of atmosphere. The value of y affects the temperature of the Earth.

a) Determine an expression for y in terms of angle x.
b) Graph $y=f(x)$ in the interval $x \in[0, \pi / 2]$.

x	$\tan \mathrm{x}$	$\cot \mathrm{x}$
0	0	
$\pi / 36$	1	
$\pi / 18$	undef	
$\pi / 12$	-1	
$\pi / 6$	0	
$\pi / 4$	1	
$\pi / 3$	undef	
$5 \pi / 12$	-1	
$\pi / 2$	0	

c) Describe what happens to the value of y as x approaches 0 . Explain this answer in relation to the question.

The transformation of a sine or cosine function $f(x)$ to $g(x)$ has the general form:
$g(x)=a f[k(x-d)]+c$
where $|\mathbf{a}|$ is the amplitude, if $\mathrm{a}<0$, there is a reflection in the x -axis
\mathbf{k} is the horizontal stretch or compression, if $\mathrm{k}<0$ there is a reflection in the y -axis
d is the phase shift
\mathbf{c} is the vertical displacement.
The period is given by $2 \pi / \mathrm{k}$

Examples: Transform the function $f(x)=\sin x$ to $g(x)$ such that $g(x)=3 \sin \left[\frac{3}{2} x+\frac{\pi}{4}\right]-2$ State the min and max values, the amplitude, the period, the phase shift the vertical displacement, and the domain and range. Graph both functions, $f(x)$ and $g(x)$, over 2 cycles.

Transforming Sinusoidal functions to Match Data not Given in Terms of $\boldsymbol{\pi}$

*Remember that a period, p , is $\mathrm{p}=2 \pi / \mathrm{k}$ and that $\mathrm{k}=2 \pi / \mathrm{p}$.
Transform the function $f(x)=\cos x$ to $g(x)$ such that $g(x)$ has an amplitude of 2, a period of 1 , a phase shift of 0.5 to the left and a vertical displacement of 3 units up. Graph the function over 2 cycles. Write the equation of the function.

Example: Write an equation to represent the following functions.
a) A sine function with a maximum value of 5 , a minimum value of -3 , a phase shift of $5 \pi / 6$ rad to the right and a period of $2 \pi / 3$.
b) A cosine function has a maximum value of -2 and a minimum value of -3 , a phase shift of 3 rad to the left and a period of 5 .

Example: Given the graph below, write an equation using both a cosine and sine function.

Example: The vertical position, h , in metres, of a rider on a Ferris wheel, after time, t , in seconds, is a sinusoidal function. The maximum height above the ground is 22 m and the minimum height is 2 m . The Ferris wheel completes one turn in 30 seconds, and the model predicts the highest point at $\mathrm{t}=0$ seconds. Determine an equation to model the Ferris wheel's rotation as both a cosine and a sine function.

An equation that involves one or more trigonometric ratios of a variable is a trigonometric equation.
ex. $\sin \theta=0.5$
ex. $4 \cos x+1=0$
ex. $2 \tan 2 x-5 \tan x-3=0$

To solve linear trigonometric equations:

1) Isolate for $\sin \theta, \cos \theta, \tan \theta, \csc \theta, \sec \theta$, or $\cot \theta$.
2) Switch any reciprocal trig ratios to their corresponding primary trig ratio.
3) Use the inverse function on your calculator or special triangles and the CAST rule to find θ.

Examples: Solve the following equations in the interval $x \in[-2 \pi, 2 \pi]$
a) Find the exact values of x , for $\sin x=-1 / \sqrt{2}$
b) Round answers to 3 decimal places, for $\tan x-3=0$
c) Round answers to 3 decimal places, for $2 \sec x+5=0$

To solve quadratic trigonometric equations:

1) Set one side equal to zero.
2) Let $\mathbf{a}=\sin x$ or $\cos x$ or $\tan x$ or $\csc x$ or $\sec x$ or $\cot x$. Then replace the trig functions with \mathbf{a} in the equation.
3) Factor the equation if possible. Then set each factor equal to zero and solve for \mathbf{a}.
4) If it is not possible to factor, use the quadratic formula to solve for \mathbf{a}.
5) Replace each a with the appropriate trig function.
6) Solve each factor using your rules for solving linear trigonometric equations.

Examples: Solve each equation in the interval $x \in[-2 \pi, 2 \pi]$
a) $\cos 2 x-1=0$
b) $2 \csc 2 x-\csc x-1=0$
c) $5 \cot 2 x-2 \cot x-3=0$

Example: The range of an arrow shot from a particular box can be modeled by the equation $r=100 \sin 2 \theta$, where r is the range in metres and θ is the angle in radians above the horizontal that the arrow is released. A target is placed 80 m away.
a) What are the restrictions on the angle θ ?
b) Determine the angle or angles that the archer should use to hit the target, to the nearest hundredth of a radian.

Section 5.5

Instantaneous rates of change of a sinusoidal function follow a sinusoidal pattern.
Many real-world processes can be modelled with a sinusoidal function, even if they do not involve angles.

Modelling real-world processes usually require transformations of the basic sinusoidal functions.
Example 1: The height, h , in metres, of a car above the ground as a ferris wheel turns can be modelled using the function $h=20 \sin (\pi t / 60)+25$, where t is the time, in seconds.
a) Determine the average rate of change of h over each time interval, rounded to 3 decimal places.
i) 5 s to 10 s
ii) 9 s to 10 s
iii) 9.9 s to 10 s
iv) 9.99 s to 10 s
b) Estimate a value for the instantaneous rate of change of h at $\mathrm{t}=10 \mathrm{~s}$.
c) What physical quantity does this instantaneous rate of change represent?
d) Would you expect the instantaneous rate of change of h to be the same at $t=15 s$? Justify you answer.

Example: The variations in maximum daily temperatures for Moose Factory, Ontario, on the first of the month from January to December are shown.

Month	Variation in Temp ${ }^{\circ} \mathrm{C}$
1	-14
2	-14
3	-4.9
4	3.2
5	11
6	19.1
7	22.4
8	20.6
9	15.9
10	8.3
11	-1.7
12	-10

a) Write a sinusoidal function, (both a sine and a cosine function), to model the data.
b) Make a scatter plot of the data. Then graph one of your models on the same set of axes and compare the graphs.

